
	
		
		Oopsy! Something went wrong!


	
		

		
		
			Type:  expression 

		

		
		
			Messages:
			invalid variable declaration [














	
	

	
	
		
			
			

			
			




	
		
		
			Connect To SQLite DB using CFML via CommandBox Task Runners

		

	






	
		
			
				
				

				
				

				
				

					
					

						
						
							
								Connect To SQLite DB using CFML via CommandBox Task Runners
							
						


						
						

						
							
								Posted by
								
								Brad Wood
							

							
								 Sep 27, 2018 05:10:00 UTC
							

						


						
						
							Here's a quick trick on working with a SQLite DB from CFML quicky and easily.  I was playing with the SQLite DB that the original .NET version of GitHub for Desktop and I wanted to access the db file from the CLI to query data and manipulate it.  The steps where very easy.


Create a Blank Task Runner


The very first step was the easiest, and this was to create a blank CommandBox Task Runner:



task create --open


Download the SQLite JDBC jar


I grabbed the latest JDBC driver for SQLite from this URL and I placed sqlite-jdbc-3.23.1.jar in a /lib folder.  This line of code at the top of my task runner will classload the jar from the lib folder relative to the working directory of my task..



classLoad( filesystemUtil.resolvepath( 'lib' ) );


Declare the Connection Details


Next I created a struct that represents the connection details for the SQLite connection.Thanks to an old post of Ray Camden's to get the correct class name and JDBC URL.



var myDSN = {
  class: 'org.sqlite.JDBC',
  connectionString: 'jdbc:sqlite:#filesystemUtil.resolvepath( '~/AppData/Local/GitHub/cache.db' )#'
};


Note that tilde (~) works in CommandBox even on Windows to reference your user home dir.


Run The SQL 


And finally I ran my query against the SQLite DB using a normal CFQuery tag.  You can use queryExecute() if you like.  I found this version easier to read since there are no parameters.



query name='local.qry' datasource=myDSN { echo( "
  SELECT key, typename
  FROM main.CacheElement
  WHERE key = 'tracked-repositories'
" ) }


Notice, I'm using Lucee's nice feature of supplying a struct for the datasource details instead of a string.This prevents me from needing to create the datasource.  More info here.


Finished Product


Here is the entire Task Runner in one piece including a line to output the query result to the console.



component {

  function run() {
    // https://github.com/xerial/sqlite-jdbc/releases
    classLoad( filesystemUtil.resolvepath( 'lib' ) );
		
    var myDSN = {
      class: 'org.sqlite.JDBC',
      connectionString: 'jdbc:sqlite:#filesystemUtil.resolvepath( '~/AppData/Local/GitHub/cache.db' )#'
    };
		
    query name='local.qry' datasource=myDSN { echo( "
        SELECT key, typename
        FROM main.CacheElement
        WHERE key = 'tracked-repositories'
    " ) }		
		
    print.line( formatterUtil.formatJSON( qry ) );
		
  }

}



I hope this sparks some ideas in your head.  Play around and see just how powerful CFML can be from the CLI, especially when we have all of the Java libraries out there at our disposal.


 


						


						
							
								 Tags: CommandBox
							

							
								  0 Comments
							

						


					


					

					


					
					
						
							
								
							

						

					


				


				
				

			


			
		

	







			
			
		

	
	

	
		
		Copyright © Coders Revolution.  All rights reserved.

		Powered by ContentBox v5.2.0+226

		
		
	



	
	
	

]
		
	

	
		* The full robust errors can be seen by switching the coldbox.customErrorTemplate in your configuration file (/config/ColdBox.cfc) to
			"/coldbox/system/exceptions/BugReport.cfm" or "/coldbox/system/exceptions/Whoops.cfm" and reloading the application.
	



