
	
		
		Oopsy! Something went wrong!

	
		

		
		
			Type: expression

		

		
		
			Messages:
			invalid variable declaration [

	
	

	
	
		
			
			

			
			

	
		
		
			ColdFusion Levenshtein Distance: String comparison and highlighting

		

	

	
		
			
				
				

				
				

				
				

					
					

						
						
							
								ColdFusion Levenshtein Distance: String comparison and highlighting
							
						

						
						

						
							
								Posted by
								
								Brad Wood
							

							
								 Jul 29, 2008 22:01:00 UTC
							

						

						
						
							This is a fun project I put out there a while back. I recently went through and optimized the performance a bit so I could officially blog it. It is an implementation of the Levenshtein Distance Algorithm in CFScript that I based off of a C# version written by Siderite Zackwehdex. Finding the "distance" between two strings is a means of comparing two strings to see how similar they both are. This can be done by finding the Longest Common String or LCS. It is as much a brain bender as it can be occasionally useful.The basic gist of the concept is this: Iterate over two strings making a note of how many characters were inserted, deleted, or transposed from one string to the other. When a difference is found, "bookmark" where you are and start looking ahead in each string to see if the strings are going to start matching up again down the line. How far down the line you look is controlled by in an input called maxOffset. The LCS is the number of characters between the two strings which were identical. The "distance" of the two strings is simply the average string length minus the longest common string. The similarity of the two strings can be expressed as a percentage given 1 minus the strings' distance divided the length of the longest string. Enough theory-- let's look at an example:

I love to go ride my go-kart. (29 chars)

I love to ride my go-cart outside. (34 chars)

	There is a deletion of the word "go "
	There is a substitution of "c" for "k" in go-cart
	There is an addition of the word "outside"

Overall, the average length of the strings is 31.5 characters.

There are 25 characters in the two strings that are identical. This is our LCS.

String 1 is 4 characters different than string 2, and string 2 has 9 characters different than string 1.

So on average, we will say 6.5 characters would need to be changed to make the strings identical. This is our distance. (4 + 9 = 13 / 2 = 6.5)

Divide that distance by the length of our longest string and we can come to the conclusion that the strings are an 81% match. (1 - (6.5 / 34) = .8088 = 81%)

Here's another example:
	
			The rain in Spain stays mainly on the plains
				The rain in Spain stays mainly on the plains
				The rain in Spain stays mainly on the plains
				Lorum Ipsum, yadda yadda.
				Lorum Ipsum, yadda yadda.
				La La La La Luke, I am your father.
			
			The rain in Madrid stays totally on the plains
				The rain in Spain stays mainly on the plains
				The rain in Barcelona stays entirely in the air
				Lorum Ipsum, Yabba dabba doo.
				Whatcha eatin? Nutin' Honey.
				Da Da Da Duke, I am your father.
		

	Roughly 67 characters are different between the two strings.
	The Longest Common String (LCS) is 180.
	The strings are a 73% match.

In addition to porting the logic over to CFScript, there are a few things I added in to my function:

	If both strings are empty, I short circuit and return a 0 for distance and LCS. Similarity is 100%.
	If either string is empty, I short circuit and return the length of the non-empty string as the distance. The LCS and similarity is 0.
	To better detect differences at the start of the string I check the first three characters. That way a matching first letter wouldn't be confused in two strings like "top hat" and "the hat"
	When looking ahead in the strings trying to reconcile a difference I search for the distance of the maxOffset until I find THREE contiguous matching characters. This is to try and eliminate false positives.
	My function will highlight the differences between the strings by wrapping the deviations in the HTML tag of your choice. Default is

The function is fairly effective for finding basic insertions, deletions, and transpositions between to strings ranging form a few words, to a few paragraphs. Since the algorithm iterates through two strings without looking back, it WON'T find sentences that had their order rearranged. The maxOffset controls how hard the code tries to look and ahead and reconcile an insert or deletion. If you expect entire sentences to be inserted, your maxOffset needs to be at least as big as the largest insertion. Of course, the larger offset you allow for, the more performance will be impacted and the more likely you are to get a false positive when looking ahead.

Have fun with it. If you can think of a way to improve the code I would love to hear about it. I have included the code for the function, an example way to call it, and a zipped version of both below.

[code]
<cfscript>

	/*

		StringSimilarity
		Brad Wood
		brad@bradwood.com
		May 2007
		Code adopted from Siderite Zackwehdex's Blog
			http://siderite.blogspot.com/2007/04/super-fast-and-accurate-string-distance.html

		Parameters:
			s1:			First string to be compared
			s2:			Second string to be compared
			maxOffset:	Average number of characters that s1 will deviate from s2 at any given point.
						This is used to control how far ahead the function looks to try and find the
						end of a peice of inserted text. Play with it to suit.

	*/

 function stringSimilarity(s1,s2,maxOffset)
 {
 var c = 0;
 var offset1 = 0;
 var offset2 = 0;
 var lcs = 0;
			// These two strings will contain the "highlighted" version
			var _s1 = createObject("java","java.lang.StringBuffer").init(javacast("int",len(s1)*3));
			var _s2 = createObject("java","java.lang.StringBuffer").init(javacast("int",len(s2)*3));
			// These chaactes will surround differences in the strings
			// (Inserted into _s1 and _s2)
			var h1 = "";
			var h2 = "";
			var return_struct = structNew();
			// If both strings are empty
 if (not len(trim(s1)) and not len(trim(s2)))
				{	
					return_struct.lcs = 0;
					return_struct.similarity = 1;
					return_struct.distance = 0;
					return_struct.s1 = "";
					return_struct.s2 = "";
		 return return_struct;
				}
			// If s2 is empty, but s1 isn't
 if (len(trim(s1)) and not len(trim(s2)))
				{
					return_struct.lcs = 0;
					return_struct.similarity = 0;
					return_struct.distance = len(s1);
					return_struct.s1 = h1 & s1 & h2;
					return_struct.s2 = "";
		 return return_struct;
				}
			// If s1 is empty, but s2 isn't
			else if (len(trim(s2)) and not len(trim(s1)))
				{
					return_struct.lcs = 0;
					return_struct.similarity = 0;
					return_struct.distance = len(s2);
					return_struct.s1 = "";
					return_struct.s2 = h1 & s2 & h2;
		 return return_struct;
				}
				
			// Examine the strings, one character at a time, anding at the shortest string
			// The offset adjusts for extra characters in either string.
 while ((c + offset1 lt len(s1))
 and (c + offset2 lt len(s2)))
 {
				// Pull the next charactes out of s1 anbd s2
				next_s1 = mid(s1,c + offset1+1,iif(not c,3,1)); // First time through check the first three
				next_s2 = mid(s2,c + offset2+1,iif(not c,3,1)); // First time through check the first three
				// If they are equal
 if (compare(next_s1,next_s2) eq 0)
					{
						// Our longeset Common String just got one bigger
						lcs = lcs + 1;
						// Append the characters onto the "highlighted" version
						_s1.append(left(next_s1,1));
						_s2.append(left(next_s2,1));
					}
				// The next two charactes did not match
				// Now we will go into a sub-loop while we attempt to
				// find our place again. We will only search as long as
				// our maxOffset allows us to.
 else
	 {
						// Don't reset the offsets, just back them up so you
						// have a point of reference
	 old_offset1 = offset1;
	 old_offset2 = offset2;
						_s1_deviation = "";
						_s2_deviation = "";
						// Loop for as long as allowed by our offset
						// to see if we can match up again
	 for (i = 0; i lt maxOffset; i=i+1)
	 {
							next_s1 = mid(s1,c + offset1 + i+1,3); // Increments each time through.
							len_next_s1 = len(next_s1);
							bookmarked_s1 = mid(s1,c + offset1+1,3); // stays the same
							next_s2 = mid(s2,c + offset2 + i+1,3); // Increments each time through.
							len_next_s2 = len(next_s2);
							bookmarked_s2 = mid(s2,c + offset2+1,3); // stays the same
							
							// If we reached the end of both of the strings
							if(not len_next_s1 and not len_next_s2)
								{
									// Quit
									break;
								}
							// These variables keep track of how far we have deviated in the
							// string while trying to find our match again.
							_s1_deviation = _s1_deviation & left(next_s1,1);
							_s2_deviation = _s2_deviation & left(next_s2,1);
							// It looks like s1 has a match down the line which fits
							// where we left off in s2
	 if (compare(next_s1,bookmarked_s2) eq 0)
		 {
									// s1 is now offset THIS far from s2
		 offset1 = offset1+i;
									// Our longeset Common String just got bigger
									lcs = lcs + 1;
									// Now that we match again, break to the main loop
		 break;
		 }
								
							// It looks like s2 has a match down the line which fits
							// where we left off in s1
	 if (compare(next_s2,bookmarked_s1) eq 0)
		 {
									// s2 is now offset THIS far from s1
		 offset2 = offset2+i;
									// Our longeset Common String just got bigger
									lcs = lcs + 1;
									// Now that we match again, break to the main loop
		 break;
		 }
	 }
						//This is the number of inserted characters were found
						added_offset1 = offset1 - old_offset1;
						added_offset2 = offset2 - old_offset2;
						
						// We reached our maxoffset and couldn't match up the strings
						if(added_offset1 eq 0 and added_offset2 eq 0)
							{
								_s1.append(h1 & left(_s1_deviation,added_offset1+1) & h2);
								_s2.append(h1 & left(_s2_deviation,added_offset2+1) & h2);
							}
						// s2 had extra characters
						else if(added_offset1 eq 0 and added_offset2 gt 0)
							{
								_s1.append(left(_s1_deviation,1));
								_s2.append(h1 & left(_s2_deviation,added_offset2) & h2 & right(_s2_deviation,1));
							}
						// s1 had extra characters
						else if(added_offset1 gt 0 and added_offset2 eq 0)
							{
								_s1.append(h1 & left(_s1_deviation,added_offset1) & h2 & right(_s1_deviation,1));
								_s2.append(left(_s2_deviation,1));
							}
	 }
 c=c+1;	
 }
			// Anything left at the end of s1 is extra
			if(c + offset1 lt len(s1))
				{
					_s1.append(h1 & right(s1,len(s1)-(c + offset1)) & h2);
				}
			// Anything left at the end of s2 is extra
			if(c + offset2 lt len(s2))
				{
					_s2.append(h1 & right(s2,len(s2)-(c + offset2)) & h2);
				}
				
			// Distance is the average string length minus the longest common string
			distance = (len(s1) + len(s2))/2 - lcs;
			// Whcih string was longest?
			maxLen = iif(len(s1) gt len(s2),de(len(s1)),de(len(s2)));
			// Similarity is the distance divided by the max length
			similarity = iif(maxLen eq 0,1,1-(distance/maxLen));
			// Return what we found.
			return_struct.lcs = lcs;
			return_struct.similarity = similarity;
			return_struct.distance = distance;
			return_struct.s1 = _s1.toString(); // "highlighted" version
			return_struct.s2 = _s2.toString(); // "highlighted" version
 return return_struct;
 }

</cfscript>
[/code]

[code]<cfset string1 = "The rain in Spain stays mainly on the plains
				The rain in Spain stays mainly on the plains
				The rain in Spain stays mainly on the plains
				Lorum Ipsum, yadda yadda.
				Lorum Ipsum, yadda yadda.
				La La La La Luke, I am your father.">

<cfset string2 = "The rain in Madrid stays totally on the plains
				The rain in Spain stays mainly on the plains
				The rain in Barcelona stays entirely in the air
				Lorum Ipsum, Yabba dabba doo.
				Whatcha eatin? Nutin' Honey.
				Da Da Da Duke, I am your father.">

<cfset comparison_result = stringSimilarity(string1,string2,10)>

<cfoutput>
Roughly #comparison_result.distance# characters are different between the two strings.

The strings are a #numberformat(comparison_result.similarity*100)#% match.

The Longest Common String is #comparison_result.lcs#.

<table border="1" cellpadding="10" cellspacing="0">
	<tr>
		<td>
			#replacenocase(comparison_result.s1,chr(10),"
","all")#
		</td>
		<td>
			#replacenocase(comparison_result.s2,chr(10),"
","all")#
		</td>
	<tr>
</table>
</cfoutput>[/code]

						

						
							
								 Tags: ColdFusion, Technology
							

							
								 18 Comments
							

						

					

					

					

					
					
						
							
								

	
	[bookmark: comment_9ef84965-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					Adrian Lynch
				
			

			

				
					
						Aug 01, 2008 21:45:24 UTC
					
				
			

		

		
		
			Excellent work!

I was about to add a feature to a project that needs to tell the user that two pieces of text aren't different enough (for SEO purposes) and this looks like it'll work a treat.

Many thanks.

		

	
	[bookmark: comment_9ef84a98-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					Brad Wood
				
			

			

				
					
						Aug 02, 2008 04:27:56 UTC
					
				
			

		

		
		
			Glad it's useful to you!

		

	
	[bookmark: comment_9ef84b88-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				Micah
			

			

				
					
						Sep 09, 2008 07:32:51 UTC
					
				
			

		

		
		
			Thanks this worked perfectly and was very useful.

		

	
	[bookmark: comment_9ef84c64-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					George Jempty
				
			

			

				
					
						Nov 06, 2008 07:19:01 UTC
					
				
			

		

		
		
			You know there is a Java implementation of the Levenshtein algorithm under StringUtils in the Jakarta Commons lang package that you ought to be able to access directly from ColdFusion? That being said, I'm very interested in how you did your highlighting, and almost wish I was using ColdFusion instead of JSP so I could just use yours ;)

		

	
	[bookmark: comment_9ef84d65-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					Topper
				
			

			

				
					
						Dec 16, 2008 12:39:18 UTC
					
				
			

		

		
		
			Legend! You just saved me a monkey load of work.
I need to correct an error in some software that has led to a database being out of touch with another reference database - don't ask about the bad DB design.

If this works, I'll owe you a cupcake!

		

	
	[bookmark: comment_9ef84e45-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					Brad Wood
				
			

			

				
					
						Dec 16, 2008 23:23:39 UTC
					
				
			

		

		
		
			@Topper: I hope it helps you. I like chocolate :)

Seriously though, if you need to compare two databases, Redgate software makes some very kick butt tools for that. They will show you line by line comparisons of stored procs and stuff, but when it comes to the differences in data I think it just tells you they aren't the same.

		

	
	[bookmark: comment_9ef84f2c-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					Hal Helms
				
			

			

				
					
						Jan 08, 2009 18:27:43 UTC
					
				
			

		

		
		
			Very nice work, Brad. I was all set to dive into this when I found your blog post. Thanks much!

		

	
	[bookmark: comment_9ef84fef-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					Siderite
				
			

			

				
					
						May 07, 2009 21:22:01 UTC
					
				
			

		

		
		
			Hey, after a year I actually find this post :) Thanks for linking my blog and for using my algorithm! Your explanations are so much cooler and visually nice than mine. Good job!

		

	
	[bookmark: comment_9ef8518c-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					Andy Bellenie
				
			

			

				
					
						Mar 29, 2010 13:46:30 UTC
					
				
			

		

		
		
			Hey,
Nice script! .. .but you need to var the return_stuct too.
/ Andy
www.cfwheels.org

		

	
	[bookmark: comment_9ef850c1-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					Brad Wood
				
			

			

				
					
						Mar 30, 2010 08:00:26 UTC
					
				
			

		

		
		
			Good call, Andy.

I updated the post and the download.

		

	
	[bookmark: comment_9ef85257-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				Kerr
			

			

				
					
						Dec 13, 2010 16:44:05 UTC
					
				
			

		

		
		
			Hey guys, I know I'm late to the game here, though wanted to extend my thanks. I was looking for a ColdFusion implementation of string comparison highlighting, and Brad's solution works great! I did add a couple function arguments for the highlighting markup used, but other than that the original function was left untouched.

		

	
	[bookmark: comment_9ef8532c-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				HP
			

			

				
					
						Mar 11, 2011 04:36:06 UTC
					
				
			

		

		
		
			Hi,
Anyone knows how to compare two strings, then returns the diff.
For example:
s1 = 'GIT-04 (INT) AMT DR'
s2 = 'GIT-04 (INT)'
it will returns 'AMT DR'
I spent hours using Javascript and Coldfusion, but there is no luck.
Any advise, anyone?

		

	
	[bookmark: comment_9ef853fb-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					Nebu
				
			

			

				
					
						Apr 20, 2011 14:19:31 UTC
					
				
			

		

		
		
			Great post. One comment:
177 distance = (len(s1) + len(s2))/2 - lcs;
178 // Whcih string was longest?
179 maxLen = iif(len(s1) gt len(s2),de(len(s1)),de(len(s2)));
180 // Similarity is the distance divided by the max length
181 similarity = iif(maxLen eq 0,1,1-(distance/maxLen));
Should/could be
177 var distance = (len(s1) + len(s2))/2 - lcs;
178 // Whcih string was longest?
179 var maxLen = iif(len(s1) gt len(s2),de(len(s1)),de(len(s2)));
180 // Similarity is the distance divided by the max length
181 var similarity = iif(maxLen eq 0,1,1-(distance/maxLen));

You might also be interested in http://cfdiff.googlecode.com/ . Keep up the good work.

		

	
	[bookmark: comment_9ef85d54-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				Aiming Xu
			

			

				
					
						Jul 27, 2011 21:58:37 UTC
					
				
			

		

		
		
			The script is great to compare char by char. Is there a script to highlight whole word if one char is different?

		

	
	[bookmark: comment_9ef85540-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				Valeriy Nenov
			

			

				
					
						Aug 04, 2011 03:41:16 UTC
					
				
			

		

		
		
			I needed this function to be in Cso I converted the code from the original CF but am getting index out of bounds error. Attached is the code. Can someone please try this out in Cand help me figure out why it is crashing. Perhaps my manual conversion is not adequate.

Val

 public string GetFixedLengthString(string input, int length)
 {
 input = input ?? string.Empty;
 input = input.Length > length ? input.Substring(0, length) : input;
 return string.Format("{0,-" + length + "}", input);
 }

 // define the resulting variables
 private int return_struct_lcs;
	private float return_struct_similarity;
	private int return_struct_distance;
	private string return_struct_s1;
	private string return_struct_s2;
 /*
	StringSimilarity
	Brad Wood
	brad@bradwood.com

	May 2007

	Code adopted from Siderite Zackwehdex's Blog
		http://siderite.blogspot.com/2007/04/super-fast-and-accurate-string-distance.html

	Parameters:
		s1:			First string to be compared
		s2:			Second string to be compared
		maxOffset:	Average number of characters that s1 will deviate from s2 at any given point.
					This is used to control how far ahead the function looks to try and find the
					end of a peice of inserted text. Play with it to suit.
*/
 /// <summary>
 /// Val converted manually form the Cold Fusion code at
 /// http://www.codersrevolution.com/index.cfm/2008/7/29/ColdFusion-Levenshtein-Distance-String-comparison-and-highlighting
 /// </summary>
 /// <param name="s1"></param>
 /// <param name="s2"></param>
 /// <param name="maxOffset"></param>
 public void stringSimilarity(string s1, string s2, int maxOffset)
 {
 int c = 0;
 int offset1 = 0;
 int offset2 = 0;
 int lcs = 0;

		// These two strings will contain the "highlighted" version
		// was: string _s1 = createObject("java","java.lang.StringBuffer").init(javacast("int",s1.Length*3));
		// Was: string _s2 = createObject("java","java.lang.StringBuffer").init(javacast("int",s2.Length*3));

 string _s1 = ""; // Val
 string _s2 = ""; // Val
 _s1 = GetFixedLengthString(_s1, s1.Length * 3); // Val
 _s2 = GetFixedLengthString(_s2, s2.Length * 3); // Val

		// These charactes will surround differences in the strings
		// (Inserted into _s1 and _s2)
 //was: string h1 = "";
 //was: string h2 = "";
 string h1 = "";
 string h2 = "";

		// was: var return_struct = structNew();

 s1 = s1.Trim();
 s2 = s2.Trim();
		// If both strings are empty
 if (String.IsNullOrEmpty(s1) && String.IsNullOrEmpty(s2)) // was: (!s1.Length && !s2.Length)
			{	
				return_struct_lcs = 0;
				return_struct_similarity = 1;
				return_struct_distance = 0;
				return_struct_s1 = "";
				return_struct_s2 = "";

	 //return return_struct;
			}

		// If s2 is empty, but s1 isn't
 if (!String.IsNullOrEmpty(s1) && String.IsNullOrEmpty(s2))// was:(s1.Length && !s2.Length)
			{
				return_struct_lcs = 0;
				return_struct_similarity = 0;
				return_struct_distance = s1.Length;
				return_struct_s1 = h1 + s1 + h2;
				return_struct_s2 = "";

	 //return return_struct;
			}

		// If s1 is empty, but s2 isn't
 else if (String.IsNullOrEmpty(s1) && !String.IsNullOrEmpty(s2))// was:(s2.Length && !s1.Length)
			{
				return_struct_lcs = 0;
				return_struct_similarity = 0;
				return_struct_distance = s2.Length;
				return_struct_s1 = "";
				return_struct_s2 = h1 + s2 + h2;

	 //return return_struct;
			}

		
		// Examine the strings, one character at a time, anding at the shortest string
		// The offset adjusts for extra characters in either string.

 while ((c + offset1 < s1.Length)
 && (c + offset2 < s2.Length))
 {
			// Pull the next charactes out of s1 and s2
 //was: string next_s1 = mid(s1,c + offset1+1,iif(!c,3,1)); // First time through check the first three
 //was: string next_s2 = mid(s2,c + offset2+1,iif(!c,3,1)); // First time through check the first three

 int iif; // Val
 if (c == 0) iif = 3; else iif = 1; // Val

 string next_s1 = s1.Substring(c + offset1 + 1, iif); // First time through check the first three
 string next_s2 = s2.Substring(c + offset2 + 1, iif); // First time through check the first three

			// If they are equal
 if (next_s1 == next_s2) //was:(compare(next_s1,next_s2) == 0)
				{
					// Our longeset Common String just got one bigger
					lcs = lcs + 1;

					// Append the characters onto the "highlighted" version
					// was: _s1.append(left(next_s1,1));
					// was: _s2.append(left(next_s2,1));
 _s1 = _s1 + next_s1.Substring(0,1);
 _s2 = _s2 + next_s2.Substring(0,1);
				}

			// The next two charactes did not match
			// Now we will go into a sub-loop while we attempt to
			// find our place again. We will only search as long as
			// our maxOffset allows us to.

 else
 {
					// Don't reset the offsets, just back them up so you
					// have a point of reference
 int old_offset1 = offset1;
 int old_offset2 = offset2;
					string _s1_deviation = "";
					string _s2_deviation = "";

					// Loop for as long as allowed by our offset
					// to see if we can match up again
 for (int i = 0; i < maxOffset; i++)
 {
						//was: next_s1 = mid(s1,c + offset1 + i+1,3); // Increments each time through.
 next_s1 = s1.Substring(c + offset1 + i + 1, 3); // Increments each time through.

 int len_next_s1 = next_s1.Length;
						// was: string bookmarked_s1 = mid(s1,c + offset1+1,3); // stays the same
 string bookmarked_s1 = s1.Substring(c + offset1 + 1,3);

						//was: next_s2 = mid(s2,c + offset2 + i+1,3); // Increments each time through.
 next_s2 = s2.Substring(c + offset2 + i + 1, 3); // Increments each time through.

 int len_next_s2 = next_s2.Length;
						//was: string bookmarked_s2 = mid(s2,c + offset2+1,3); // stays the same
 string bookmarked_s2 = s2.Substring(c + offset2 + 1, 3); // stays the same

						// If we reached the end of both of the strings
 if ((len_next_s1 == 0) && (len_next_s2 == 0)) // was: (!len_next_s1 && !len_next_s2)
							{
								// Quit
								break;
							}

						// These variables keep track of how far we have deviated in the
						// string while trying to find our match again.
 _s1_deviation = _s1_deviation + next_s1.Substring(0, 1); // was: left(next_s1,1);
 _s2_deviation = _s2_deviation + next_s2.Substring(0, 1); // was; left(next_s2,1);

						// It looks like s1 has a match down the line which fits
						// where we left off in s2

 if (next_s1 == bookmarked_s2)// was: (compare(next_s1,bookmarked_s2) == 0)
	 {
								// s1 is now offset THIS far from s2
	 offset1 = offset1+i;

								// Our longeset Common String just got bigger
								lcs = lcs + 1;

								// Now that we match again, break to the main loop
	 break;
	 }
							

						// It looks like s2 has a match down the line which fits
						// where we left off in s1

 if (next_s2 == bookmarked_s1) // was: (compare(next_s2,bookmarked_s1) == 0)
	 {
								// s2 is now offset THIS far from s1
	 offset2 = offset2+i;

								// Our longeset Common String just got bigger
								lcs = lcs + 1;

								// Now that we match again, break to the main loop
	 break;
	 }
 }

					//This is the number of inserted characters were found
					int added_offset1 = offset1 - old_offset1;
					int added_offset2 = offset2 - old_offset2;

					
					// We reached our maxoffset and couldn't match up the strings
					if(added_offset1 == 0 && added_offset2 == 0)
						{
							// was: _s1.append(h1 + left(_s1_deviation,added_offset1+1) + h2);
							// was: _s2.append(h1 + left(_s2_deviation,added_offset2+1) + h2);
 _s1 = _s1 + h1 + _s1_deviation.Substring(0, added_offset1 + 1) + h2;
 _s2 = _s2 + h1 + _s2_deviation.Substring(0, added_offset2 + 1) + h2;	
 }

					// s2 had extra characters
					else if(added_offset1 == 0 && added_offset2 > 0)
 {
 // was: _s1.append(left(_s1_deviation,1));
 // was: _s2.append(h1 + left(_s2_deviation,added_offset2) + h2 + right(_s2_deviation,1));
 _s1 = _s1 + _s1_deviation.Substring(0, 1);
 _s2 = _s2 + h1 + _s2_deviation.Substring(0, added_offset2) + h2 + _s2_deviation.Substring(_s2_deviation.Length - 1, 1); // ?? Length -1

 }

					// s1 had extra characters
					else if(added_offset1 > 0 && added_offset2 == 0)
						{
 // was: _s1.append(h1 + left(_s1_deviation,added_offset1) + h2 + right(_s1_deviation,1));
 // was: _s2.append(left(_s2_deviation,1));
 _s1 = _s1 + h1 + _s1_deviation.Substring(0, added_offset1) + h2 + _s1_deviation.Substring(_s1_deviation.Length - 1, 1);
 _s2 = _s2 + _s2_deviation.Substring(0, 1);
 }
 }
 c++;
 // was: c=c+1;	
 }

		// Anything left at the end of s1 is extra

		if(c + offset1 < s1.Length)
			{
				// was: _s1.append(h1 + right(s1,s1.Length-(c + offset1)) + h2);
 _s1 = _s1 + h1 + s1.Substring(s1.Length - 1, s1.Length - (c + offset1)) + h2;
 }

		// Anything left at the end of s2 is extra
		if(c + offset2 < s2.Length)
			{
				// was: _s2.append(h1 + right(s2,s2.Length-(c + offset2)) + h2);
 _s2 = _s2 + h1 + s2.Substring(s2.Length - 1, s2.Length - (c + offset2)) + h2;
 }

		// Distance is the average string length minus the longest common string
		int distance = (s1.Length + s2.Length)/2 - lcs;

		// Which string was longest?
		// was: int maxLen = iif(s1.Length > s2.Length,de(s1.Length),de(s2.Length));
 int maxLen;
 if(s1.Length > s2.Length) maxLen = s1.Length;
 else maxLen = s2.Length;

		// Similarity is the distance divided by the max length
 // was: similarity = iif(maxLen eq 0,1,1-(distance/maxLen));
		float similarity;
 if(maxLen == 0) similarity =1;
 else similarity = 1-(distance/maxLen);

		// Return what we found.
		return_struct_lcs = lcs;
		return_struct_similarity = similarity;
		return_struct_distance = distance;
		return_struct_s1 = _s1; // "highlighted" version
		return_struct_s2 = _s2; // "highlighted" version

 //return return_struct;
 }

		

	
	[bookmark: comment_9ef85f90-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					Brad Wood
				
			

			

				
					
						Aug 04, 2011 04:14:23 UTC
					
				
			

		

		
		
			@Valeriy: Sorry, I'm not much of a Cguru, but one thing to keep in mind is that ColdFusion uses 1-based arrays instead of 0-based arrays. In other words, an array with only 1 item in it is accessed as myArray[1].

		

	
	[bookmark: comment_9ef86087-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					Siderite
				
			

			

				
					
						Aug 08, 2011 08:57:25 UTC
					
				
			

		

		
		
			Lol! The original code was C#. You are converting something back. Although it would make an interesting analysis of how Cto CF to Cchanges code.

		

	
	[bookmark: comment_9ef86158-c8b5-11ec-8207-36b4556413e5]

	

		
					[image:]
	

		
		
			
				
					
					Sam
				
			

			

				
					
						Jan 31, 2012 18:56:42 UTC
					
				
			

		

		
		
			Wonderful. Thanks!

		

							

						

					

				

				
				

			

			
		

	

			
			
		

	
	

	
		
		Copyright © Coders Revolution. All rights reserved.

		Powered by ContentBox v5.2.0+226

		
		
	

	
	
	

]
		
	

	
		* The full robust errors can be seen by switching the coldbox.customErrorTemplate in your configuration file (/config/ColdBox.cfc) to
			"/coldbox/system/exceptions/BugReport.cfm" or "/coldbox/system/exceptions/Whoops.cfm" and reloading the application.
	

